Overview
Any imaging or remote sensing system suffers from sensor noise and a measure of the quality of a sensor is its Signal-To-Noise Ratio (SNR). The higher the SNR, the better quality data scientists and citizens can receive. As small satellites grow, the market for observation satellites grows as well, leading to higher demand for high quality sensing data. The ability to cool sensors on small satellites provides higher quality image data without the need for major spacecraft design overhauls. Large crycoolers are not able to fit into small satellites neatly, and increase mission risk. However, using a solid-state thermoelectric module provides ample cooling to increase sensor SNR, while decreasing mission risk and increasing mission lifetime.

The Peltier Effect
A thermoelectric module (TEC) utilizes the Peltier Effect. This effect occurs when an electric current is run through a series of differently charged conductors, like semi-conductors. Because electrons are passing through the differently charged conductors, heat passes from one side of the module, to the other, see Figure 1.

Unlike other active cooling solutions, like crycoolers, a thermoelectric system is not limited by the amount of coolant onboard the spacecraft and does not involve any moving parts. Because of this, a thermoelectric system can extend mission lifetime and buy down mission risk, all while meeting mission requirements.

Testing the Model
To take full advantage of the cooling capabilities of the TEC system, the TEC is required to be as close to the imaging sensor as possible. Since most imaging spacecraft payloads are developed from scratch, this is a reasonable requirement, and the TEC can be interfaced with the back of the sensor board. Because the TEC is dumping heat to one side, that heat must be dissipated away. A passive heat strap attached to the spacecraft structure thus provides ample heat dissipation during imaging operations. Figure 2 illustrates how the system would come together inside the spacecraft.

Building the Test Stand
In order to test the feasibility of the system, a minimal prototype was created under the auspices of a College of Engineering Senior Capstone project. This prototype model involved a Canon XSI as as sensor baseline, a Marlow thermoelectric module, and a Corsair CPU water cooler. The water cooler served as a simulation of dissipating heat away from the thermoelectric module, much like how the spacecraft heat strap would function with the system. Figure 3 shows the prototype setup. Additionally, based on a successful ground test, the system would then be tested in ANSYS in a space environment.

Experiment Results & FEA Analysis
The prototype system was able to bring the sensor temperature from 25 degrees Celsius to 9 degrees Celsius in a matter of minutes, showing that the system can work. By using a feedback control loop to control power, a temperature setpoint can be maintained. The experiment also yielded an SNR v. Temperature curve, which shows how the sensor performance becomes enhanced at lower temperatures. The system was compared to a simulation in ANSYS with a 3U radiator pointed at Earth, a somewhat common pointing configuration. ANSYS shows that a TEC is capable of deep cooling of a sensor. The analysis showed that a TEC enabled system can quickly lower a sensor’s temperature from ambient spacecraft to a desired temperature while using only 2 Watts of power. Figure 5 illustrates the TEC system after it reaches an example setpoint of -10 degrees Celsius.

Potential System Integrations
As a case study, there are existing CubeSat systems which could benefit from a TEC cooling mechanism. The OnSemi KAI-29050 CCD, similar to what Planet uses, could receive a performance improvement in low-light situations. Figure 6 shows how SNR can increase if the sensor was cooled to -20 degrees Celsius, instead of being subject to ambient temperatures in the “Tuna Can.” A TEC cooling system would be readily available to provide added performance for even more Earth coverage.

Additionally, CubeSat missions with the goal of studying the infrared spectrum require cooling of the sensor, as the sensor temperature can affect the data. A TEC system can easily be implemented on these missions, as it does not require an extreme amount of space, mass, or power.

In the future, developing the TEC control system for space operation will be a focus, so that power requirements are not as demanding on the spacecraft. Creating and tuning the PID loop to the TEC will be the final important part of this project, as the ability to cool the sensor to a setpoint has not been achieved yet.

Acknowledgements
This research and the results of it could not be achieved without the support of the University of Georgia College of Engineering, Franklin College of Arts & Sciences, Center for Undergraduate Research Opportunities, Center for Geospatial Research, and Small Satellite Research Lab. Graham Grable would also like to recognize Khoa Ngo, Megan Le Corre, and Paul Keith for their past contributions.